Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.497
Filtrar
1.
Genes Dis ; 11(4): 101164, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38560505

RESUMO

Gastric cancer is highly prevalent among digestive tract tumors. Due to the intricate nature of the gastric cancer immune microenvironment, there is currently no effective treatment available for advanced gastric cancer. However, there is promising potential for immunotherapy targeting the prostaglandin E2 receptor subtype 4 (EP4) in gastric cancer. In our previous study, we identified a novel small molecule EP4 receptor antagonist called YY001. Treatment with YY001 alone demonstrated a significant reduction in gastric cancer growth and inhibited tumor metastasis to the lungs in a mouse model. Furthermore, administration of YY001 stimulated a robust immune response within the tumor microenvironment, characterized by increased infiltration of antigen-presenting cells, T cells, and M1 macrophages. Additionally, our research revealed that YY001 exhibited remarkable synergistic effects when combined with the PD-1 antibody and the clinically targeted drug apatinib, rather than fluorouracil. These findings suggest that YY001 holds great promise as a potential therapeutic strategy for gastric cancer, whether used as a standalone treatment or in combination with other drugs.

2.
Front Cell Infect Microbiol ; 14: 1362765, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562963

RESUMO

Cestodes use own lipid-binding proteins to capture and transport hydrophobic ligands, including lipids that they cannot synthesise as fatty acids and cholesterol. In E. granulosus s.l., one of these lipoproteins is antigen B (EgAgB), codified by a multigenic and polymorphic family that gives rise to five gene products (EgAgB8/1-5 subunits) assembled as a 230 kDa macromolecule. EgAgB has a diagnostic value for cystic echinococcosis, but its putative role in the immunobiology of this infection is still poorly understood. Accumulating research suggests that EgAgB has immunomodulatory properties, but previous studies employed denatured antigen preparations that might exert different effects than the native form, thereby limiting data interpretation. This work analysed the modulatory actions on macrophages of native EgAgB (nEgAgB) and the recombinant form of EgAg8/1, which is the most abundant subunit in the larva and was expressed in insect S2 cells (rEgAgB8/1). Both EgAgB preparations were purified to homogeneity by immunoaffinity chromatography using a novel nanobody anti-EgAgB8/1. nEgAgB and rEgAgB8/1 exhibited differences in size and lipid composition. The rEgAgB8/1 generates mildly larger lipoproteins with a less diverse lipid composition than nEgAgB. Assays using human and murine macrophages showed that both nEgAgB and rEgAgB8/1 interfered with in vitro LPS-driven macrophage activation, decreasing cytokine (IL-1ß, IL-6, IL-12p40, IFN-ß) secretion and ·NO generation. Furthermore, nEgAgB and rEgAgB8/1 modulated in vivo LPS-induced cytokine production (IL-6, IL-10) and activation of large (measured as MHC-II level) and small (measured as CD86 and CD40 levels) macrophages in the peritoneum, although rEgAgB8/1 effects were less robust. Overall, this work reinforced the notion that EgAgB is an immunomodulatory component of E. granulosus s.l. Although nEgAgB lipid's effects cannot be ruled out, our data suggest that the EgAgB8/1 subunit contributes to EgAgB´s ability to regulate the inflammatory activation of macrophages.


Assuntos
Echinococcus granulosus , Humanos , Animais , Camundongos , Echinococcus granulosus/genética , Echinococcus granulosus/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Ativação de Macrófagos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Macrófagos , Citocinas/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38561566

RESUMO

Rapamycin is a potent immunosuppressive drug that has been recently proposed for a wide range of applications beyond its current clinical use. For some of these proposed applications, encapsulation in nanoparticles is key to ensure therapeutic efficacy and safety. In this work, we evaluate the effect of pore size on mesoporous silica nanoparticles (MSN) as rapamycin nanocarriers. The successful preparation of MSN with 4 different pore sizes was confirmed by dynamic light scattering, zeta potential, transmission electron microscopy and N2 adsorption. In these materials, rapamycin loading was pore size-dependent, with smaller pore MSN exhibiting greater loading capacity. Release studies showed sustained drug release from all MSN types, with larger pore MSN presenting faster release kinetics. In vitro experiments using the murine dendritic cell (DC) line model DC2.4 showed that pore size influenced the biological performance of MSN. MSN with smaller pore sizes presented larger nanoparticle uptake by DC2.4 cells, but were also associated with slightly larger cytotoxicity. Further evaluation of DC2.4 cells incubated with rapamycin-loaded MSN also demonstrated a significant effect of MSN pore size on their immunological response. Notably, the combination of rapamycin-loaded MSN with an inflammatory stimulus (lipopolysaccharide, LPS) led to changes in the expression of DC activation markers (CD40 and CD83) and in the production of the proinflammatory cytokine TNF-α compared to LPS-treated DC without nanoparticles. Smaller-pored MSN induced more substantial reductions in CD40 expression while eliciting increased CD83 expression, indicating potential immunomodulatory effects. These findings highlight the critical role of MSN pore size in modulating rapamycin loading, release kinetics, cellular uptake, and subsequent immunomodulatory responses.

4.
Cardiovasc Res ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563353

RESUMO

AIMS: The interleukin-1 receptor accessory protein (IL1RAP) is a co-receptor required for signalling through the IL-1, IL-33, and IL-36 receptors. Using a novel anti-IL1RAP-blocking antibody, we investigated the role of IL1RAP in atherosclerosis. METHODS AND RESULTS: Single-cell RNA sequencing data from human atherosclerotic plaques revealed the expression of IL1RAP and several IL1RAP-related cytokines and receptors, including IL1B and IL33. Histological analysis showed the presence of IL1RAP in both the plaque and adventitia, and flow cytometry of murine atherosclerotic aortas revealed IL1RAP expression on plaque leucocytes, including neutrophils and macrophages. High-cholesterol diet fed apolipoprotein E-deficient (Apoe-/-) mice were treated with a novel non-depleting IL1RAP-blocking antibody or isotype control for the last 6 weeks of diet. IL1RAP blockade in mice resulted in a 20% reduction in subvalvular plaque size and limited the accumulation of neutrophils and monocytes/macrophages in plaques and of T cells in adventitia, compared with control mice. Indicative of reduced plaque inflammation, the expression of several genes related to leucocyte recruitment, including Cxcl1 and Cxcl2, was reduced in brachiocephalic arteries of anti-IL1RAP-treated mice, and the expression of these chemokines in human plaques was mainly restricted to CD68+ myeloid cells. Furthermore, in vitro studies demonstrated that IL-1, IL-33, and IL-36 induced CXCL1 release from both macrophages and fibroblasts, which could be mitigated by IL1RAP blockade. CONCLUSION: Limiting IL1RAP-dependent cytokine signalling pathways in atherosclerotic mice reduces plaque burden and plaque inflammation, potentially by limiting plaque chemokine production.

5.
Acta Pharm Sin B ; 14(4): 1560-1591, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572104

RESUMO

Intratumoral microbiota has become research hotspots, and emerges as a non-negligent new component of tumor microenvironments (TME), due to its powerful influence on tumor initiation, metastasis, immunosurveillance and prognosis despite in low-biomass. The accumulations of microbes, and their related components and metabolites within tumor tissues, endow TME with additional pluralistic features which are distinct from the conventional one. Therefore, it's definitely necessary to comprehensively delineate the sophisticated landscapes of tumor microbe microenvironment, as well as their functions and related underlying mechanisms. Herein, in this review, we focused on the fields of tumor microbe microenvironment, including the heterogeneity of intratumor microbiota in different types of tumors, the controversial roles of intratumoral microbiota, the basic features of tumor microbe microenvironment (i.e., pathogen-associated molecular patterns (PAMPs), typical microbial metabolites, autophagy, inflammation, multi-faceted immunomodulation and chemoresistance), as well as the multidisciplinary approach-based intervention of tumor microbiome for cancer therapy by applying wild-type or engineered live microbes, microbiota metabolites, antibiotics, synthetic biology and rationally designed biomaterials. We hope our work will provide valuable insight to deeply understand the interplay of cancer-immune-microbial, and facilitate the development of microbes-based tumor-specific treatments.

6.
Crit Rev Oncol Hematol ; : 104341, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38575042

RESUMO

Extracellular vesicles (EVs) impact normal and pathological cellular signaling through bidirectional trafficking. Exosomes, a subset of EVs possess biomolecules including proteins, lipids, DNA fragments and various RNA species reflecting a speculum of their parent cells. The involvement of exosomes in bidirectional communication and their biological constituents substantiate its role in regulating both physiology and pathology, including multiple cancers. Non-small cell lung cancer (NSCLC) is the most common lung cancers (85%) with high incidence, mortality and reduced overall survival. Lack of efficient early diagnostic and therapeutic tools hurdles the management of NSCLC. Interestingly, the exosomes from body fluids similarity with parent cells or tissue offers a potential future multicomponent tool for the early diagnosis of NSCLC. The structural twinning of exosomes with a cell/tissue and the competitive tumor derived exosomes in tumor microenvironment (TME) promotes the unpinning horizons of exosomes as a drug delivery, vaccine, and therapeutic agent. Exosomes in clinical point of view assist to trace: acquired resistance caused by various therapeutic agents, early diagnosis, progression, and surveillance. In an integrated approach, EV biomarkers offer potential cutting-edge techniques for the detection and diagnosis of cancer, though the purification, characterization, and biomarker identification processes for the translational research regarding EVs need further optimization.

7.
Tissue Eng Regen Med ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578425

RESUMO

BACKGROUND: Syringomyelia is a progressive chronic disease that leads to nerve pain, sensory dissociation, and dyskinesia. Symptoms often do not improve after surgery. Stem cells have been widely explored for the treatment of nervous system diseases due to their immunoregulatory and neural replacement abilities. METHODS: In this study, we used a rat model of syringomyelia characterized by focal dilatation of the central canal to explore an effective transplantation scheme and evaluate the effect of mesenchymal stem cells and induced neural stem cells for the treatment of syringomyelia. RESULTS: The results showed that cell transplantation could not only promote syrinx shrinkage but also stimulate the proliferation of ependymal cells, and the effect of this result was related to the transplantation location. These reactions appeared only when the cells were transplanted into the cavity. Additionally, we discovered that cell transplantation transformed activated microglia into the M2 phenotype. IGF1-expressing M2 microglia may play a significant role in the repair of nerve pain. CONCLUSION: Cell transplantation can promote cavity shrinkage and regulate the local inflammatory environment. Moreover, the proliferation of ependymal cells may indicate the activation of endogenous stem cells, which is important for the regeneration and repair of spinal cord injury.

8.
Nucl Med Biol ; 132-133: 108908, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38599145

RESUMO

INTRODUCTION: Site-specific immunomodulators (SSIs) are a novel class of therapeutics made from inactivated bacterial species designed to regulate the innate immune system in targeted organs. QBECO is a gut-targeted SSI that is being advanced clinically to treat and/or prevent inflammatory bowel disease, cancer, and serious infections of the gastrointestinal (GI) tract and proximal organs, and QBKPN is a lung-targeted SSI that is in clinical development for the treatment and/or prevention of chronic inflammatory lung disease, lung cancers and respiratory tract infections. While these SSIs have demonstrated both safety and proof-of-concept in preclinical and clinical studies, detailed understanding of their trafficking and biodistribution is yet to be fully characterized. METHODS: QBECO and QBKPN were radiolabeled with [89Zr] and injected subcutaneously into healthy mice. The mice underwent Positron Emission Tomography (PET) imaging every day for eight days to track biodistribution of the SSIs. Tissue from the site of injection was collected and immunohistologically probed for immune cell infiltration. RESULTS: Differential biodistribution of the two SSIs was seen, adhering to their site-specific targeting. QBKPN appeared to migrate from the site of injection (abdomen) to the cervical lymph nodes which are nearer to the respiratory tract and lungs. QBECO remained in the abdominal region, with lymphatic trafficking to the inguinal lymph nodes, which are nearer to GI-proximal tissues/organs. Immune infiltration at the site of injection comprised of neutrophils for both SSIs, and macrophages for only QBKPN. CONCLUSION: Radiolabeling of SSIs allows for longitudinal in vivo imaging of biodistribution and trafficking. PET imaging revealed differential biodistribution of the SSIs based on the organotropism of the bacteria from which the SSI is derived. Trafficking from the site of injection to the targeted site is in part mediated via the lymphatics and involves macrophages and neutrophils.

9.
ACS Infect Dis ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602352

RESUMO

Host-acting compounds are emerging as potential alternatives to combating antibiotic resistance. Here, we show that bosutinib, an FDA-approved chemotherapeutic for treating chronic myelogenous leukemia, does not possess any antibiotic activity but enhances macrophage responses to bacterial infection. In vitro, bosutinib stimulates murine and human macrophages to kill bacteria more effectively. In a murine wound infection with vancomycin-resistant Enterococcus faecalis, a single intraperitoneal bosutinib injection or multiple topical applications on the wound reduce the bacterial load by approximately 10-fold, which is abolished by macrophage depletion. Mechanistically, bosutinib stimulates macrophage phagocytosis of bacteria by upregulating surface expression of bacterial uptake markers Dectin-1 and CD14 and promoting actin remodeling. Bosutinib also stimulates bacterial killing by elevating the intracellular levels of reactive oxygen species. Moreover, bosutinib drives NF-κB activation, which protects infected macrophages from dying. Other Src kinase inhibitors such as DMAT and tirbanibulin also upregulate expression of bacterial uptake markers in macrophages and enhance intracellular bacterial killing. Finally, cotreatment with bosutinib and mitoxantrone, another chemotherapeutic in clinical use, results in an additive effect on bacterial clearance in vitro and in vivo. These results show that bosutinib stimulates macrophage clearance of bacterial infections through multiple mechanisms and could be used to boost the host innate immunity to combat drug-resistant bacterial infections.

10.
Acta Pharmacol Sin ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589690

RESUMO

Autism spectrum disorder (ASD) is a cluster of neurodevelopmental disorders characterized by deficits in communication and behavior. Increasing evidence suggests that the microbiota-gut-brain axis and the likely related immune imbalance may play a role in the development of this disorder. Gastrointestinal deficits and gut microbiota dysfunction have been linked to the development or severity of autistic behavior. Therefore, treatments that focus on specific diets may improve gastrointestinal function and aberrant behavior in individuals with ASD. In this study, we investigated whether a diet containing specific prebiotic fibers, namely, 3% galacto-oligosaccharide/fructo-oligosaccharide (GOS/FOS; 9:1), can mitigate the adverse effects of in utero exposure to valproic acid (VPA) in mice. Pregnant BALB/cByJ dams were injected with VPA (600 mg/kg, sc.) or phosphate-buffered saline (PBS) on gestational day 11 (G11). Male offspring were divided into four groups: (1) in utero PBS-exposed with a control diet, (2) in utero PBS-exposed with GOS/FOS diet, (3) in utero VPA-exposed with a control diet, and (4) in utero VPA-exposed with GOS/FOS diet. Dietary intervention started from birth and continued throughout the duration of the experiment. We showed that the prebiotic diet normalized VPA-induced alterations in male offspring, including restoration of key microbial taxa, intestinal permeability, peripheral immune homeostasis, reduction of neuroinflammation in the cerebellum, and impairments in social behavior and cognition in mice. Overall, our research provides valuable insights into the gut-brain axis involvement in ASD development. In addition, dietary interventions might correct the disbalance in gut microbiota and immune responses and, ultimately, might improve detrimental behavioral outcomes in ASD.

11.
Adv Pharm Bull ; 14(1): 105-119, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38585461

RESUMO

Phytochemicals are compounds found in plants that possess a variety of bioactive properties, including antioxidant and immunomodulatory properties. Recent studies have highlighted the potential of phytochemicals in targeting specific signalling pathways involved in cytokine storm, a life-threatening clinical condition resulting from excessive immune cell activation and oversupply of proinflammatory cytokines. Several studies have documented the immunomodulatory effects of phytochemicals on immune function, including their ability to regulate essential cellular and molecular interactions of immune system cells. This makes them a promising alternative for cytokine storm management, especially when combined with existing chemotherapies. Furthermore, phytochemicals have been found to target multiple signalling pathways, including the TNF-α/NF-κB, IL-1/NF-κB, IFN-γ/JAK/STAT, and IL-6/JAK-STAT. These pathways play critical roles in the development and progression of cytokine storm, and targeting them with phytochemicals represents a promising strategy for controlling cytokine release and the subsequent inflammation. Studies have also investigated certain families of plant-related constituents and their potential immunomodulatory actions. In vivo and in vitro studies have reported the immunomodulatory effects of phytochemicals, which provide viable alternatives in the management of cytokine storm syndrome. The collective data from previous studies suggest that phytochemicals represent a potentially functional source of cytokine storm treatment and promote further exploration of these compounds as immunomodulatory agents for suppressing specific signalling cascade responses. Overall, the previous research findings support the use of phytochemicals as a complementary approach in managing cytokine storm and improving patient outcomes.

12.
Front Immunol ; 15: 1350197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576605

RESUMO

Introduction: Carp edema virus (CEV) is a fish poxvirus that primarily infects the gills of common carp. CEV causes koi sleepy disease (KSD), which is highly contagious and can result in mortality of up to 100%. Methods: In the present study, we analyzed the stress and immune responses during KSD in two strains of common carp with different resistance to CEV: susceptible koi and resistant Amur sazan. Experiments were performed at two temperatures: 12°C and 18°C. In the case of koi carp, we also analyzed the effect of supplementation of 0.6% NaCl into tank water, which prevents mortality of the CEV-infected fish (salt rescue model). Results: We found that CEV-infected koi kept at 18°C had the highest viral load, which correlated with the most severe histopathological changes in the gills. CEV infection resulted in the activation of stress response reflected by the upregulated expression of genes involved in stress response in the stress axis organs and increased levels of cortisol and glucose in the blood plasma. These changes were the most pronounced in CEV-infected koi kept at 18°C. At both temperatures, the activation of antiviral immune response was observed in koi kept under freshwater and NaCl conditions upon CEV infection. Interestingly, a clear downregulation of the expression of adaptive immune genes was observed in CEV-infected koi kept under freshwater at 18°C. Conclusion: CEV induces a stress response and modulates adaptive immune response in koi, and this is correlated with the level of viral load and disease development.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Poxviridae , Animais , Cloreto de Sódio , Edema , Imunidade
13.
Mol Immunol ; 170: 99-109, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643690

RESUMO

Macrophage polarization towards the M1 phenotype under bacterial product-related exposure (LPS) requires a rapid change in gene expression patterns and cytokine production along with a metabolic rewiring. Metabolic pathways and redox reactions are such tightly connected, giving rise to an area of research referred to as immunometabolism. A role in this context has been paid to the master redox-sensitive regulator Nuclear factor erythroid 2-related factor 2 (Nrf2) and to the 5'-ectonucleotidase CD73, a marker related to macrophage metabolism rearrangement under pro-inflammatory conditions. In this light, a cell model of LPS-stimulated macrophages has been established and nine 4,7-dihydro-4-ethylpyrazolo[l,5-a]pyrimidin-7-ones with a potential anti-inflammatory effect have been administered. Our data highlight that two selected compounds (namely, 5 and 8) inhibit the LPS-induced Nrf2 nuclear translocation and ameliorate the activity rate of the antioxidant enzyme catalase. Additionally, the pyridine-containing compound (8) promotes the shift from the pro-inflammatory immunophenotype M1 to the pro-resolving M2 one, by downregulating CD80 and iNOS and by enhancing CD163 and TGFß1 expression. Most importantly, CD73 is modulated by these compounds as well as the lactate production. Our data demonstrate that pyrazolo[l,5-a]pyrimidine derivatives are effective as anti-inflammatory compounds. Furthermore, these pyrazolo[l,5-a]pyrimidines exert their action via CD73-related signaling and modulation of cell metabolism of activated macrophages.

15.
J Virol ; : e0192523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624230

RESUMO

Recurrent respiratory papillomatosis (RRP) is a rare benign tumor caused mainly by the infection of the respiratory tract epithelial cells by the human papillomavirus (HPV) type 6/11. However, the specific mechanisms underlying the inhibition of the host's innate immune response by HPV remain unclear. For this purpose, we employed single-cell RNA sequencing to analyze the states of various immune cells in RRP samples post-HPV infection and utilized a cellular model of HPV infection to elucidate the mechanisms by which HPV evades the innate immune system in RRP. The results revealed distinct immune cell heterogeneity in RRP and demonstrated that HPV11 E7 can inhibit the phosphorylation of the stimulator of interferon genes protein, thereby circumventing the body's antiviral response. In vitro co-culture experiments demonstrated that stimulation of macrophages to produce interferon-beta induced the death of HPV-infected epithelial cells, also reducing HPV viral levels. In summary, our study preliminarily identifies the potential mechanisms by which HPV evades the host's antiviral immune response, as well as the latent antiviral functions exhibited by activated macrophages. This research serves as an initial exploration of antiviral immune evasion in RRP, laying a solid foundation for investigating immunotherapeutic approaches for the disease.IMPORTANCESurgical tumor reduction is the most common treatment for recurrent respiratory papillomatosis (RRP). One of the characteristics of RRP is its persistent recurrence, and multiple surgeries are usually required to control the symptoms. Recently, some adjuvant therapies have shown effectiveness, but none of them can completely clear human papillomavirus (HPV) infection, and thus, a localized antiviral immune response is significant for disease control; after all, HPV infection is limited to the epithelium. Inhibition of interferon-beta (IFN-ß) secretion by HPV11 E7 viral proteins in epithelial cells by affecting stimulator of interferon genes phosphorylation may account for the persistence of low-risk HPV replication in the RRP. Moreover, suppression of the IFN-I pathway in RRP cell types might provide clues regarding the hyporeactive function of local immune cells. However, activation of macrophage groups to produce IFN-ß can still destroy HPV-infected cells.

16.
Adv Healthc Mater ; : e2400077, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599586

RESUMO

Following biomaterial implantation, a failure to resolve inflammation during the formation of a fracture hematoma can significantly limit the biomaterial's ability to facilitate bone regeneration. This study aims to combine the immunomodulatory and osteogenic effects of BMP-7 and IL-10 with the regenerative capacity of collagen-hydroxyapatite (CHA) scaffolds to enhance in vitro mineralization in a hematoma-like environment. Incubation of CHA scaffolds with human whole blood leads to rapid adsorption of fibrinogen, significant stiffening of the scaffold, and the formation of a hematoma-like environment characterized by a limited capacity to support the infiltration of human bone progenitor cells, a significant upregulation of inflammatory cytokines and acute phase proteins, and significantly reduced osteoconductivity. CHA scaffolds functionalized with BMP-7 and IL-10 significantly downregulate the production of key inflammatory cytokines, including IL-6, IL-8, and leptin, creating a more permissive environment for mineralization, ultimately enhancing the biomaterial's osteoconductivity. In conclusion, targeting the onset of inflammation in the early phase of bone healing using BMP-7 and IL-10 functionalized CHA scaffolds is a promising approach to effectively downregulate inflammatory processes, while fostering a more permissive environment for bone regeneration.

17.
Front Immunol ; 15: 1360065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558823

RESUMO

Mounting evidence progressively appreciates the vital interplay between immunity and metabolism in a wide array of immunometabolic chronic disorders, both autoimmune and non-autoimmune mediated. The immune system regulates the functioning of cellular metabolism within organs like the brain, pancreas and/or adipose tissue by sensing and adapting to fluctuations in the microenvironment's nutrients, thereby reshaping metabolic pathways that greatly impact a pro- or anti-inflammatory immunophenotype. While it is agreed that the immune system relies on an adequate nutritional status to function properly, we are only just starting to understand how the supply of single or combined nutrients, all of them termed immunonutrients, can steer immune cells towards a less inflamed, tolerogenic immunophenotype. Polyphenols, a class of secondary metabolites abundant in Mediterranean foods, are pharmacologically active natural products with outstanding immunomodulatory actions. Upon binding to a range of receptors highly expressed in immune cells (e.g. AhR, RAR, RLR), they act in immunometabolic pathways through a mitochondria-centered multi-modal approach. First, polyphenols activate nutrient sensing via stress-response pathways, essential for immune responses. Second, they regulate mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) balance in immune cells and are well-tolerated caloric restriction mimetics. Third, polyphenols interfere with the assembly of NLR family pyrin domain containing 3 (NLRP3) in endoplasmic reticulum-mitochondria contact sites, inhibiting its activation while improving mitochondrial biogenesis and autophagosome-lysosome fusion. Finally, polyphenols impact chromatin remodeling and coordinates both epigenetic and metabolic reprogramming. This work moves beyond the well-documented antioxidant properties of polyphenols, offering new insights into the multifaceted nature of these compounds. It proposes a mechanistical appraisal on the regulatory pathways through which polyphenols modulate the immune response, thereby alleviating chronic low-grade inflammation. Furthermore, it draws parallels between pharmacological interventions and polyphenol-based immunonutrition in their modes of immunomodulation across a wide spectrum of socioeconomically impactful immunometabolic diseases such as Multiple Sclerosis, Diabetes (type 1 and 2) or even Alzheimer's disease. Lastly, it discusses the existing challenges that thwart the translation of polyphenols-based immunonutritional interventions into long-term clinical studies. Overcoming these limitations will undoubtedly pave the way for improving precision nutrition protocols and provide personalized guidance on tailored polyphenol-based immunonutrition plans.


Assuntos
Mitocôndrias , Polifenóis , Humanos , Polifenóis/farmacologia , Mitocôndrias/metabolismo , Sistema Imunitário/metabolismo , Inflamação/metabolismo , Tecido Adiposo/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-38588999

RESUMO

The aim of this article is to report clinical features and therapeutic approach of cicatrizing keratoconjunctivitis secondary to ocular lichen planus based on a case report. The patient is a 77-year-old female with a history of ocular discomfort and recurrent keratoconjunctivitis that did not improve with conservative treatment, as well as a history of oral and nasal aphthous ulcers. After a complete ophthalmologic, dermatologic and anatomopathological study, the diagnosis of ocular lichen planus was established and immunosuppressive treatment was initiated. Most cases of ocular lichen planus are presented as chronic cicatricial conjunctivitis. A correct differential diagnosis, as well as an early detection are essential for the control of this entity and its sequelae. Treatment, based on corticosteroids and immunosuppressants, both topical and systemic, is aimed at controlling inflammation and scarring.

20.
Med Oncol ; 41(5): 115, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622289

RESUMO

Bacopa monnieri (L) Wettst, commonly known as Brahmi, stands as a medicinal plant integral to India's traditional medical system, Ayurveda, where it is recognized as a "medhya rasayana"-a botanical entity believed to enhance intellect and mental clarity. Its significant role in numerous Ayurvedic formulations designed to address conditions such as anxiety, memory loss, impaired cognition, and diminished concentration underscores its prominence. Beyond its application in cognitive health, Brahmi has historically been employed in Ayurvedic practices for the treatment of inflammatory diseases, including arthritis. In contemporary biomedical research, Bacopa monnieri can attenuate the release of pro-inflammatory cytokines TNF-α and IL-6 in animal models. However, there remains a paucity of information regarding Bacopa's potential as an anticancer agent, warranting further investigation in this domain. Based on previous findings with Brahmi (Bacopa monnieri), the current study aims to find out the role of Brahmi plant preparation (BPP) in immunomodulatory actions on IDC. Employing a specific BPP concentration, we conducted a comprehensive study using MTT assay, ELISA, DNA methylation analysis, Western blotting, ChIP, and mRNA profiling to assess BPP's immunomodulatory properties. Our research finding showed the role of BPP in augmenting the action of T helper 1 (TH1) cells which secreted interferon-γ (IFN-γ) which in turn activated cytotoxic T-lymphocytes (CTL) to kill the cells of IDC (*p < 0.05). Moreover, we found out that treatment with BPP not only increased the activities of tumor-suppressor genes (p53 and BRCA1) but also decreased the activities of oncogenes (Notch1 and DNAPKcs) in IDC (*p < 0.05). BPP had an immense significance in controlling the epigenetic dysregulation in IDC through the downregulation of Histone demethylation & Histone deacetylation and upregulation of Histone methylation and Histone acetylation (*p < 0.05). Our Chromatin immunoprecipitation (ChIP)-qPCR data showed BPP treatment increased percentage enrichment of STAT1 & BRCA1 (*p < 0.05) and decreased percentage enrichment of STAT3, STAT5 & NF ΚB (*p < 0.05) on both TBX21 and BRCA1 gene loci in IDC. In addition, BPP treatment reduced the hypermethylation of the BRCA1-associated-DNA, which is believed to be a major factor in IDC (*p < 0.05). BPP not only escalates the secretion of type 1 specific cytokines but also escalates tumor suppression and harmonizes various epigenetic regulators and transcription factors associated with Signal Transducer and Activator of Transcription (STAT) to evoke tumor protective immunity in IDC.


Assuntos
Bacopa , Carcinoma Ductal , Neoplasias , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Histonas , Citocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...